论文标题

Torelli定理一些Steiner捆

Torelli theorems for some Steiner bundles

论文作者

Lazarsfeld, Robert, Sheridan, John

论文摘要

Steiner捆绑包是在射影空间上的矢量束,作为由线性形式的矩阵定义的地图的焦点。这些在各种几何环境中出现,到现在为止,它们是大量文献的主题。从1993年从Dolgachev和Kapranov的作品开始,几位作者考虑了一个问题,即是否可以从捆绑包中恢复用于构建它的几何数据。在这里,我们证明了与任何非常充分的线性序列上足够正面除数相关的重言式捆绑包的Torelli-Type陈述。在附录中,我们提供了Dolgachev-Kapranov结果的新证明。

A Steiner bundle is a vector bundle on projective space arising as the cokernel of the map defined by a matrix of linear forms. These come up in various geometric settings, and by now they are the subject of a considerable literature. Starting with work of Dolgachev and Kapranov from 1993, several authors have considered the question of whether one can recover from the bundle the geometric data used to construct it. Here we prove such Torelli-type statements for the tautological bundles associated to sufficiently positive divisors on any very ample linear series. In an appendix, we give a new proof of the result of Dolgachev-Kapranov.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源