论文标题

带有嵌入引导布局的图形探索

Graph Exploration with Embedding-Guided Layouts

论文作者

Shen, Leixian, Tai, Zhiwei, Shen, Enya, Wang, Jianmin

论文摘要

节点链接图被广泛用于可视化图。大多数图形布局算法仅使用图形拓扑来进行美学目标(例如,最小化节点的闭合和边缘交叉点)或使用节点属性进行探索目标(例如,保存可见的社区)。结合两种观点的现有混合方法仍然遭受各种一代限制(例如,输入类型有限,手动调整以及图形的先验知识)以及美学和探索目标之间的不平衡。在本文中,我们提出了一条灵活的基于嵌入的图形探索管道,以享受图形拓扑和节点属性的最佳状态。首先,我们利用归因图的算法嵌入算法将两个视角编码为潜在空间。然后,我们提出了一种嵌入式驱动的图形布局算法,Gegraph,它可以实现具有更好社区保护的美学布局,以支持对图形结构的简单解释。接下来,根据生成的图形布局和从嵌入向量提取的洞察力扩展图形探索。通过示例说明,我们通过焦点+上下文互动构建了一个布局保护聚合方法,并使用多个接近性策略进行了相关的节点搜索方法。最后,我们进行定量和定性评估,一项用户研究以及两项案例研究以验证我们的方法。

Node-link diagrams are widely used to visualize graphs. Most graph layout algorithms only use graph topology for aesthetic goals (e.g., minimize node occlusions and edge crossings) or use node attributes for exploration goals (e.g., preserve visible communities). Existing hybrid methods that bind the two perspectives still suffer from various generation restrictions (e.g., limited input types and required manual adjustments and prior knowledge of graphs) and the imbalance between aesthetic and exploration goals. In this paper, we propose a flexible embedding-based graph exploration pipeline to enjoy the best of both graph topology and node attributes. First, we leverage embedding algorithms for attributed graphs to encode the two perspectives into latent space. Then, we present an embedding-driven graph layout algorithm, GEGraph, which can achieve aesthetic layouts with better community preservation to support an easy interpretation of the graph structure. Next, graph explorations are extended based on the generated graph layout and insights extracted from the embedding vectors. Illustrated with examples, we build a layout-preserving aggregation method with Focus+Context interaction and a related nodes searching approach with multiple proximity strategies. Finally, we conduct quantitative and qualitative evaluations, a user study, and two case studies to validate our approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源