论文标题
旋转最小表面的表征DE Sitter空间
A characterization of rotational minimal surfaces in the de Sitter space
论文作者
论文摘要
de安图特空间中旋转最小表面的生成曲线$ \ s_1^3 $被描述为变异问题的解决方案。事实证明,这些曲线是$ \ s_1^2 $的所有曲线中质量中心的关键点,并具有规定的端点和固定长度。这扩展了在欧几里得环境中链状和catenoid的已知特性。
The generating curves of rotational minimal surfaces in the de Sitter space $\s_1^3$ are characterized as solutions of a variational problem. It is proved that these curves are the critical points of the center of mass among all curves of $\s_1^2$ with prescribed endpoints and fixed length. This extends the known properties of the catenary and the catenoid in the Euclidean setting.