论文标题
智能家居的能量活动数据集
An Energy Activity Dataset for Smart Homes
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
A smart home energy dataset that records miscellaneous energy consumption data is publicly offered. The proposed energy activity dataset (EAD) has a high data type diversity in contrast to existing load monitoring datasets. In EAD, a simple data point is labeled with the appliance, brand, and event information, whereas a complex data point has an extra application label. Several discoveries have been made on the energy consumption patterns of many appliances. Load curves of the appliances are measured when different events and applications are triggered and utilized. A revised longest-common-subsequence (LCS) similarity measurement algorithm is proposed to calculate energy dataset similarities. Thus, the data quality prior information becomes available before training machine learning models. In addition, a subsample convolutional neural network (SCNN) is put forward. It serves as a non-intrusive optical character recognition (OCR) approach to obtain energy data directly from monitors of power meters. The link for the EAD dataset is: https://drive.google.com/drive/folders/1zn0V6Q8eXXSKxKgcs8ZRValL5VEn3anD