论文标题

PV-RCNN ++:用于3D对象检测的语义点 - 素Voxel特征交互

PV-RCNN++: Semantical Point-Voxel Feature Interaction for 3D Object Detection

论文作者

Wu, Peng, Gu, Lipeng, Yan, Xuefeng, Xie, Haoran, Wang, Fu Lee, Cheng, Gary, Wei, Mingqiang

论文摘要

前景点(即物体)和室外激光雷达点云中的背景点之间通常存在巨大的失衡。它阻碍了尖端的探测器专注于提供信息的区域,以产生准确的3D对象检测结果。本文提出了一个新颖的对象检测网络,通过语义点 - 素的特征相互作用,称为PV-RCNN ++。与大多数现有方法不同,PV-RCNN ++探讨了语义信息以增强对象检测的质量。首先,提出了一个语义分割模块,以保留更具歧视性的前景关键。这样的模块将指导我们的PV-RCNN ++在关键区域集成了更多与对象相关的点和体素特征。然后,为了使点和体素有效相互作用,我们利用基于曼哈顿距离的体素查询来快速采样关键点周围的体素特征。与球查询相比,这种体素查询将降低从O(n)到O(k)的时间复杂性。此外,为了避免仅学习本地特征,基于注意力的残留点网模块旨在扩展接受场,以将邻近的素素特征适应为关键点。 KITTI数据集的广泛实验表明,PV-RCNN ++达到81.60 $ \%$,40.18 $ \%$ \%$,68.21 $ \%$ \%$ 3D地图在汽车,行人和骑自行车的人中,可以实现可比的甚至更好的绩效,甚至可以更好地表现出可比性的人。

Large imbalance often exists between the foreground points (i.e., objects) and the background points in outdoor LiDAR point clouds. It hinders cutting-edge detectors from focusing on informative areas to produce accurate 3D object detection results. This paper proposes a novel object detection network by semantical point-voxel feature interaction, dubbed PV-RCNN++. Unlike most of existing methods, PV-RCNN++ explores the semantic information to enhance the quality of object detection. First, a semantic segmentation module is proposed to retain more discriminative foreground keypoints. Such a module will guide our PV-RCNN++ to integrate more object-related point-wise and voxel-wise features in the pivotal areas. Then, to make points and voxels interact efficiently, we utilize voxel query based on Manhattan distance to quickly sample voxel-wise features around keypoints. Such the voxel query will reduce the time complexity from O(N) to O(K), compared to the ball query. Further, to avoid being stuck in learning only local features, an attention-based residual PointNet module is designed to expand the receptive field to adaptively aggregate the neighboring voxel-wise features into keypoints. Extensive experiments on the KITTI dataset show that PV-RCNN++ achieves 81.60$\%$, 40.18$\%$, 68.21$\%$ 3D mAP on Car, Pedestrian, and Cyclist, achieving comparable or even better performance to the state-of-the-arts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源