论文标题
一种可伸缩的Lagrange-bemap方案,用于可压缩多材的欧拉方程,并具有尖锐的接口重建
A scalable Lagrange-Remap scheme for compressible multimaterial Euler equations with sharp interface reconstruction
论文作者
论文摘要
这项工作在多物质可压缩流体流量模拟领域。拟议的方案是欧拉(Eulerian),并且与有限的体积方法有关,但在常规正交网格上的Lagrange-Remap形式主义中。拉格朗日方案交错,重新映射阶段类似于有限的体积对流方案。多物质扩展使用经典的VOF通量进行尖锐的接口重建。该方案的原始性是尝试进行9分重击方案而无需定向分裂。该策略应允许保留经典多物质交错方案的良好特性,同时通过一步重新映射保存并行通信。将讨论结果并将其与严重基准的经典Lagrange-remap方案进行比较。
This work is in the field of multi-material compressible fluid flows simulation. The proposed scheme is eulerian and related to finite volumes methods, but in a Lagrange-Remap formalism on regular orthogonal meshes. The Lagrangian scheme is staggered and the remap phase is similar to a finite volume advection scheme. The multi-material extension uses classical VOF fluxes for sharp interface reconstruction. The originality of the scheme is in the attempt for a 9 points remap scheme without directional splitting. This strategy should allow to preserve good properties of classical multi-material staggered schemes, while saving parallel communications with the one step remap. Results will be discussed and compared to those from classical Lagrange-Remap schemes on severe benchmarks.