论文标题
Kähler歧管上的绿色功能的矩阵li-yau-hamilton估计
A Matrix Li-Yau-Hamilton estimate for the Green function on Kähler manifolds
论文作者
论文摘要
在本文中,我们证明了具有非负溶性双形性曲率的全部Kähler歧管上的绿色功能的基质li-yau-hamilton不等式。该估计值可以看作是Kähler歧管上的热方程的基质估计值的椭圆形类似物,或者是作者先前获得的Riemannian歧管的估计值的复杂类似物。
In this paper we prove a matrix Li-Yau-Hamilton inequality for the Green function on complete Kähler manifolds with nonnegative holomorphic bisectional curvature. This estimate can be seen as an elliptic analogue of the matrix estimate of Cao and Ni for the heat equation on Kähler manifolds, or the complex analogue of the estimate for Riemannian manifolds obtained previously by the author.