论文标题

使用分散产生成像和照明参数的微小通风测量

Minute ventilation measurement using Plethysmographic Imaging and lighting parameters

论文作者

Minati, Daniel, Sams, Ludwik, Li, Karen, Ji, Bo, Vardhan, Krishna

论文摘要

呼吸障碍(例如睡眠呼吸暂停)是一种严重的疾病,由于肺部含有/交换氧气和二氧化碳的能力不足,以确保身体处于稳定的体内平衡状态,因此会影响大量个体。呼吸测量(例如微小通风)可以与其他生理测量相关,例如远程监测健康和检测与呼吸相关疾病的症状的心率变异性。在这项工作中,我们制定了一种基于深度学习的方法来衡量私人数据集上的远程通风。接受这项工作后,数据集将公开。我们使用两个深层神经网络的版本来估计通过可穿戴心率和呼吸设备获得的数据流的微小通风。我们证明,管道的简单设计 - 包括轻量级深神经网络 - 可以轻松地纳入实时健康监测系统中。

Breathing disorders such as sleep apnea is a critical disorder that affects a large number of individuals due to the insufficient capacity of the lungs to contain/exchange oxygen and carbon dioxide to ensure that the body is in the stable state of homeostasis. Respiratory Measurements such as minute ventilation can be used in correlation with other physiological measurements such as heart rate and heart rate variability for remote monitoring of health and detecting symptoms of such breathing related disorders. In this work, we formulate a deep learning based approach to measure remote ventilation on a private dataset. The dataset will be made public upon acceptance of this work. We use two versions of a deep neural network to estimate the minute ventilation from data streams obtained through wearable heart rate and respiratory devices. We demonstrate that the simple design of our pipeline - which includes lightweight deep neural networks - can be easily incorporate into real time health monitoring systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源