论文标题

部分可观测时空混沌系统的无模型预测

Continuous-time balanced truncation for time-periodic fluid flows using frequential Gramians

论文作者

Padovan, Alberto, Rowley, Clarence W.

论文摘要

表现出时间周期性行为的流量的减少阶模型对于多个任务,包括主动控制和优化至关重要。在管理方程的周期性解决方案附近获得所需的还原模型的一个众所周知的程序是连续的平衡截断。在此框架内,通常使用对冲动的前向和伴随的频线后响应来估计格拉米亚人的周期性可及性和可观察性Gramians。但是,此过程在计算上可能很昂贵,尤其是在瞬态缓慢的瞬变的情况下。此外,只有从浮雕的意义上进行周期性轨道稳定时才能执行。为了解决这些问题,我们使用Gramians的频域表示,从此我们称之为频繁的Gramians。首先,这些频繁的Gramians对于稳定和不稳定的动力学都明确定义。特别是,我们表明,当基础系统不稳定时,这些Gramians会满足一对盟友差异lyapunov方程。其次,可以通过求解方程的代数系统来估计它们,这些方程式将自己赋予了沉重的计算并行性,并提供所需的频率后响应而无需遵循物理瞬变。我们在Reynolds数字的定期轴对称射流中演示了该方法RE = 1250且RE = 1500。在较低的雷诺数下,该流量强烈放大了亚谐波扰动,并展示了围绕Floquet稳定的T型晶状体溶液的涡流配对。在较高的雷诺数下,基础的T-周期轨道是不稳定的,并且流动自然沉降到由配对涡旋的2t骨化极限循环上。在两个雷诺数字上,我们都使用平衡的还原级模型来设计反馈控制器和状态估计器来抑制涡旋配对。

Reduced-order models for flows that exhibit time-periodic behavior are critical for several tasks, including active control and optimization. One well-known procedure to obtain the desired reduced-order model in the proximity of a periodic solution of the governing equations is continuous-time balanced truncation. Within this framework, the periodic reachability and observability Gramians are usually estimated numerically via quadrature using the forward and adjoint post-transient response to impulses. However, this procedure can be computationally expensive, especially in the presence of slowly-decaying transients. Moreover, it can only be performed if the periodic orbit is stable in the sense of Floquet. In order to address these issues, we use the frequency-domain representation of the Gramians, which we henceforth refer to as frequential Gramians. First, these frequential Gramians are well-defined for both stable and unstable dynamics. In particular, we show that when the underlying system is unstable, these Gramians satisfy a pair of allied differential Lyapunov equations. Second, they can be estimated numerically by solving algebraic systems of equations that lend themselves to heavy computational parallelism and that deliver the desired post-transient response without having to follow physical transients. We demonstrate the method on a periodically-forced axisymmetric jet at Reynolds numbers Re=1250 and Re=1500. At the lower Reynolds number, the flow strongly amplifies subharmonic perturbations and exhibits vortex pairing about a Floquet-stable T-periodic solution. At the higher Reynolds number, the underlying T-periodic orbit is unstable and the flow naturally settles onto a 2T-periodic limit cycle characterized by pairing vortices. At both Reynolds numbers, we use a balanced reduced-order model to design a feedback controller and a state estimator to suppress vortex pairing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源