论文标题

使用对象关联集的分层聚类的增量语义定位

Incremental Semantic Localization using Hierarchical Clustering of Object Association Sets

论文作者

Hu, Lan, Luo, Zhongwei, Yuan, Runze, Cao, Yuchen, Wei, Jiaxin, Kneip, Kai Wangand Laurent

论文摘要

我们提出了一种新颖的方法来进行重新定位或放置识别,这是在许多机器人技术,自动化和AR应用中解决的基本问题。我们不依靠通常不稳定的外观信息,而是考虑以局部对象形式给出参考图的情况。我们的本地化框架依赖于3D语义对象检测,然后与地图中的对象关联。可能的配对关联集是基于评估空间兼容性的合并度量来基于分层聚类而生长的。后者特别使用有关​​相对对象配置的信息,这相对于全局转换是不变的。随着相机逐步探索环境并检测更多对象,关联集将进行更新和扩展。我们在几种具有挑战性的情况下测试我们的算法,包括动态场景,大型视图变化以及具有重复实例的场景。我们的实验表明,我们的方法在鲁棒性和准确性方面都优于先前的艺术。

We present a novel approach for relocalization or place recognition, a fundamental problem to be solved in many robotics, automation, and AR applications. Rather than relying on often unstable appearance information, we consider a situation in which the reference map is given in the form of localized objects. Our localization framework relies on 3D semantic object detections, which are then associated to objects in the map. Possible pair-wise association sets are grown based on hierarchical clustering using a merge metric that evaluates spatial compatibility. The latter notably uses information about relative object configurations, which is invariant with respect to global transformations. Association sets are furthermore updated and expanded as the camera incrementally explores the environment and detects further objects. We test our algorithm in several challenging situations including dynamic scenes, large view-point changes, and scenes with repeated instances. Our experiments demonstrate that our approach outperforms prior art in terms of both robustness and accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源