论文标题
使用设计的硅碳化物中的硅空位中心在高压下进行磁性检测
Magnetic detection under high pressures using designed silicon vacancy centers in silicon carbide
论文作者
论文摘要
压力诱导的磁相转变由于能够检测钻石砧细胞高压的超导行为的能力而引起了人们的兴趣。但是,由于样品室的体积较小,对局部样品磁性特性的检测是一个巨大的挑战。最近,钻石中氮空位(NV)中心的光学检测到的磁共振(ODMR)已用于原位压力诱导的相变检测。但是,由于它们的四个方向轴和温度依赖性零视野拆分,解释了NV中心观察到的ODMR光谱仍然具有挑战性。在这里,我们研究了4H-SIC中植入的硅空缺缺陷的光学和自旋特性,该缺陷是单轴和无关的零视场分解。使用此技术,我们在约7 GPA下观察到ND2FE14B的磁相跃迁,并绘制超导体YBA2CU3O6.6的临界温度压力相图。这些结果突出了基于硅空置的量子传感器在高压下基于原位的磁性检测的潜力。
Pressure-induced magnetic phase transition is attracting interest due to its ability to detect superconducting behaviour at high pressures in diamond anvil cells. However, detection of the local sample magnetic properties is a great challenge due to the small sample chamber volume. Recently, optically detected magnetic resonance (ODMR) of nitrogen vacancy (NV) centers in diamond have been used for in-situ pressure-induced phase transition detection. However, owing to their four orientation axes and temperature-dependent zero-field-splitting, interpreting the observed ODMR spectra of NV centers remain challenging. Here, we study the optical and spin properties of implanted silicon vacancy defects in 4H-SiC, which is single-axis and temperature-independent zero-field-splitting. Using this technique, we observe the magnetic phase transition of Nd2Fe14B at about 7 GPa and map the critical temperature-pressure phase diagram of the superconductor YBa2Cu3O6.6. These results highlight the potential of silicon vacancy-based quantum sensors for in-situ magnetic detection at high pressures.