论文标题
间歇性重力波信号的深度学习
Deep learning for intermittent gravitational wave signals
论文作者
论文摘要
未分辨的紧凑型二元合并的合奏是随机重力波(GW)背景的有前途的来源。对于恒星质量的黑洞二进制文件,天体物理随机GW背景预计由于其间歇性特征而表现出非高斯性。我们研究了深度学习以检测这种非高斯随机GW背景的应用,并用Drasco \&Flanagan(2003)中采用的玩具模型证明了这一点,其中每个爆发都由一个在时间箱中集中的单个峰描述。对于检测问题,我们将三个神经网络与不同的结构进行比较:较浅的卷积神经网络(CNN),更深的CNN和残留网络。我们表明,剩余网络可以达到可比的灵敏度,即具有$ \ log_ {10}ξ\ in [-3,-1] $的信号的常规非高斯统计量。此外,我们使用两种方法应用深度学习来进行参数估计,其中神经网络(1)直接提供占空比和信噪比(SNR)(SNR),并且(2)根据占空比值将数据分为四个类。这是用于检测非高斯随机GW背景的深度学习应用程序的第一步,并提取了有关天体物理占空比的信息。
The ensemble of unresolved compact binary coalescences is a promising source of the stochastic gravitational wave (GW) background. For stellar-mass black hole binaries, the astrophysical stochastic GW background is expected to exhibit non-Gaussianity due to their intermittent features. We investigate the application of deep learning to detect such non-Gaussian stochastic GW background and demonstrate it with the toy model employed in Drasco \& Flanagan (2003), in which each burst is described by a single peak concentrated at a time bin. For the detection problem, we compare three neural networks with different structures: a shallower convolutional neural network (CNN), a deeper CNN, and a residual network. We show that the residual network can achieve comparable sensitivity as the conventional non-Gaussian statistic for signals with the astrophysical duty cycle of $\log_{10}ξ\in [-3,-1]$. Furthermore, we apply deep learning for parameter estimation with two approaches, in which the neural network (1) directly provides the duty cycle and the signal-to-noise ratio (SNR) and (2) classifies the data into four classes depending on the duty cycle value. This is the first step of a deep learning application for detecting a non-Gaussian stochastic GW background and extracting information on the astrophysical duty cycle.