论文标题

一个无监督的基于学习的框架,用于有效表示反应堆事故

An Unsupervised Learning-based Framework for Effective Representation Extraction of Reactor Accidents

论文作者

Li, Chengyuan, Li, Meifu, Qiu, Zhifang

论文摘要

随着核工程中高精度系统分析程序的越来越多,用于事故模拟的高保真计算数据的数量正在爆炸。因此,可以从数据中自动提取低维特征的算法,并确保特征的有效性是为了提高事故诊断系统的性能和信心。这项研究提出了一个基于自动编码器的自主学习框架,即填充的自动编码器(PAE),该框架能够自动编码已噪声噪声的事故监视数据,并通过基于视觉变形金刚的编码将Vector Vector Vector-Fector-Fector-Fecore-FequeDecorsemented数据解码为噪声,并部分丢失了数据中的数据,并部分缺少数据,并将其部分丢失到低维功能中。因此,该框架的编码部分能够自动从反映完整和无噪声原始数据的部分缺失和嘈杂的监视数据中自动推断有效表示,并且表示向量可用于下游任务,以进行事故诊断或其他。在本文中,将HPR1000的LOCA用作研究对象,并且PAE通过使用不同的断裂位置和大小作为数据集的案例进行了无监督的方法训练。随后将预训练的PAE的编码器部分用作监视数据的特征提取器,以及用于预测断裂位置和大小的几种基本统计学习算法。研究结果表明,与具有端到端模型结构的诊断模型相比,具有两个阶段的预训练的诊断模型在休息位置和大小诊断能力方面的性能更好,指标分别提高了41.62%和80.86%。

With the increasing use of high-precision system analysis programs in nuclear engineering, the number of high-fidelity computational data for accident simulation is exploding. Therefore, an algorithm that can achieve both automatic extraction of low-dimensional features from the data and guarantee the validity of the features is needed to improve the performance and confidence of the accident diagnosis system. This study proposes an autoencoder-based autonomous learning framework, namely Padded Auto-Encoder (PAE), which is able to automatically encode accident monitoring data that has been noise-added and with partially missing data into low-dimensional feature vectors via a Vision Transformer-based encoder, and to decode the feature vectors into noise-free and complete reconstructed monitoring data. Thus, the encoder part of the framework is able to automatically infer valid representations from partially missing and noisy monitoring data that reflect the complete and noise-free original data, and the representation vectors can be used for downstream tasks for accident diagnosis or else. In this paper, LOCA of HPR1000 was used as the study object, and the PAE was trained by an unsupervised method using cases with different break locations and sizes as the dataset. The encoder part of the pre-trained PAE was subsequently used as the feature extractor for the monitoring data, and several basic statistical learning algorithms for predicting the break locations and sizes. The results of the study show that the pre-trained diagnostic model with two stages has a better performance in break location and size diagnostic capability with an improvement of 41.62% and 80.86% in the metrics respectively, compared to the diagnostic model with end-to-end model structure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源