论文标题

与一个超导量子量子同时控制多个目标猫态Qubits的一个超导量子

Single-step implementation of a hybrid controlled-NOT gate with one superconducting qubit simultaneously controlling multiple target cat-state qubits

论文作者

Su, Qi-Ping, Zhang, Yu, Yang, Chui-Ping

论文摘要

混合量子门最近引起了很大的关注。它们在将量子信息处理器与不同编码的量子位连接起来,在量子处理器和量子内存之间具有重要的应用中起着重要作用。在这项工作中,我们提出了一个多目标控制的单步实现,与一个超导(SC)量子同时控制$ n $ n $ target cat-state Qubits。在此提案中,该大门是用$ N $ Microwave腔与三级SC Qutrit相连的。控制SC量子的两个逻辑状态由QUTRIT的两个最低水平表示,而每个目标猫态量子位的两个逻辑状态由两个微波炉腔的两个准正交猫状态表示。该提案基本上是通过每个腔与Qutrit的分散耦合来运作的。门实现非常简单,因为它仅需要单步操作。无需应用经典脉冲或进行测量。栅极操作时间与目标Qubit的数量无关,因此随着目标Qubits的数量的增加,它不会增加。此外,由于Qutrit的第三较高能级在栅极运行过程中没有占据,因此Qutrit的脱碳被极大地抑制。作为这种混合多目标闸门的应用,我们进一步讨论了杂种Greenberger-Horne-Zeilinger(GHz)SC Qubits和Cat-State Qubits的纠缠状态。例如,我们通过数值分析了在当前电路QED技术中产生一个SC量子和三个猫态量子的混合GHz状态的实验可行性。

Hybrid quantum gates have recently drawn considerable attention. They play significant roles in connecting quantum information processors with qubits of different encoding and have important applications in the transmission of quantum states between a quantum processor and a quantum memory. In this work, we propose a single-step implementation of a multi-target-qubit controlled-NOT gate with one superconducting (SC) qubit simultaneously controlling $n$ target cat-state qubits. In this proposal, the gate is implemented with $n$ microwave cavities coupled to a three-level SC qutrit. The two logic states of the control SC qubit are represented by the two lowest levels of the qutrit, while the two logic states of each target cat-state qubit are represented by two quasi-orthogonal cat states of a microwave cavity. This proposal operates essentially through the dispersive coupling of each cavity with the qutrit. The gate realization is quite simple because it requires only a single-step operation. There is no need of applying a classical pulse or performing a measurement. The gate operation time is independent of the number of target qubits, thus it does not increase as the number of target qubits increases. Moreover, because the third higher energy level of the qutrit is not occupied during the gate operation, decoherence from the qutrit is greatly suppressed. As an application of this hybrid multi-target-qubit gate, we further discuss the generation of a hybrid Greenberger-Horne-Zeilinger (GHZ) entangled state of SC qubits and cat-state qubits. As an example, we numerically analyze the experimental feasibility of generating a hybrid GHZ state of one SC qubit and three cat-state qubits within present circuit QED technology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源