论文标题
使用社交媒体数据的事件检测技术
An event detection technique using social media data
论文作者
论文摘要
人们在社交媒体平台上(例如Twitter,Facebook,Pinterest和Google+)发布了有关不同主题的信息。他们互相关注,发布有关当前事件的信息的人更有可能会得到更好的回应。很难对社交媒体平台上的大量数据进行手动分析。这为自动分析UserContib的社交媒体文档开辟了新的研究方向。由于用户共享的丰富信息,因此很难自动社交媒体数据分析。许多研究人员使用Twitter数据进行社交媒体分析(SMA),因为Twitter数据在公共领域中免费获得。这项研究工作中最重要的之一。社交媒体数据的事件检测用于不同的应用程序,例如交通拥堵检测,灾难和应急管理以及实时新闻检测。在Twitter平台上共享的信息的性质是简短的,嘈杂的和模棱两可的。因此,从用户生成的和虚拟的数据中的事件检测和事件短语提取变得具有挑战性。为了应对这些挑战,使用不同的认知属性以键形形式从流媒体社交媒体数据中提取事件。这项研究工作背后的动机是为事件短语的词汇变化提供实质性改进,同时检测到Twitter数据的事件和子事件。在这项研究工作中,从社交媒体数据中进行事件检测的方法分为三个阶段:识别微博文中的子图共发生网络(WCN),该网络(WCN)提供了有关钥匙响的重要信息;从社交媒体数据中识别多个事件;并对事件短语的上下文信息进行排名。
People post information about different topics which are in their active vocabulary over social media platforms (like Twitter, Facebook, PInterest and Google+). They follow each other and it is more likely that the person who posts information about current happenings will receive better response. Manual analysis of huge amount of data on social media platforms is difficult. This has opened new research directions for automatic analysis of usercontributed social media documents. Automatic social media data analysis is difficult due to abundant information shared by users. Many researchers use Twitter data for Social Media Analysis (SMA) as the Twitter data is freely available in the public domain. One of the most this research work. Event Detection from social media data is used for different applications like traffic congestion detection, disaster and emergency management, and live news detection. Nature of the information which is shared on twitter platform is short-text, noisy, and ambiguous. Thus, event detection and extraction of event phrases from user-generated and illformed data becomes challenging. To address these challenges, events are extracted from streaming social media data in the form of keyphrases using different cognitive properties. The motivation behind this research work is to provide substantial improvements in the lexical variation of event phrases while detecting events and sub-events from twitter data. In this research work, the approach towards event detection from social media data is divided into three phases namely: Identifying sub-graphs in Microblog Word Co-occurrence Network (WCN) which provides important information about keyphrases; Identifying multiple events from social media data; and Ranking contextual information of event phrases.