论文标题

Hecke模块在非最小程度上

Freeness of Hecke modules at non-minimal levels

论文作者

Iyengar, Srikanth B., Khare, Chandrashekhar B., Manning, Jeffrey

论文摘要

我们基于[6]的结果,以表明同源组$ \ mathrm {h} _ {r_1+r_2}(y_0(y_0(\ mathcal {n}_σ),\ mathcal {o} _})几何特性0表示。迄今为止,我们已经证明了同源组具有非零的免费$r_σ$ - 直接求和。新成分是一个涉及[6]中较高编码中定义的一致性模块的交换代数参数。

We build on the results of [6] to show that the homology groups $\mathrm{H}_{r_1+r_2}(Y_0(\mathcal{N}_Σ),\mathcal{O})_{\mathfrak{m}_Σ}$ of arithmetic manifolds are free over certain deformation rings $R_Σ$, when there are enough geometric characteristic 0 representations. Hitherto we had proved that the homology group has a nonzero free $R_Σ$-direct summand. The new ingredient is a commutative algebra argument involving congruence modules defined in higher codimension in [6].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源