论文标题

Yolox-pai:改进的Yolox,比Yolov6更强大,更快

YOLOX-PAI: An Improved YOLOX, Stronger and Faster than YOLOv6

论文作者

Wu, Ziheng, Zou, Xinyi, Zhou, Wenmeng, Huang, Jun

论文摘要

我们开发一个名为EasyCV的多合一计算机视觉工具箱,以促进使用各种SOTA计算机视觉方法。最近,我们将Yolox-Pai(改进的Yolox版本)添加到EasyCV中。我们进行消融研究以研究某些检测方法对YOLOX的影响。我们还为PAI-blade提供了一种易于使用,用于加速基于Bladedisc和Tensorrt的推理过程。最后,我们在单个NVIDIA V100 GPU上在1.0毫秒内收到可可末次的42.8次地图,该gpu比yolov6快一点。简单但有效的预测变量API也在EasyCV中设计,以进行END2END对象检测。现在可以在以下网址提供代码和模型,请访问:https://github.com/alibaba/easycv。

We develop an all-in-one computer vision toolbox named EasyCV to facilitate the use of various SOTA computer vision methods. Recently, we add YOLOX-PAI, an improved version of YOLOX, into EasyCV. We conduct ablation studies to investigate the influence of some detection methods on YOLOX. We also provide an easy use for PAI-Blade which is used to accelerate the inference process based on BladeDISC and TensorRT. Finally, we receive 42.8 mAP on COCO dateset within 1.0 ms on a single NVIDIA V100 GPU, which is a bit faster than YOLOv6. A simple but efficient predictor api is also designed in EasyCV to conduct end2end object detection. Codes and models are now available at: https://github.com/alibaba/EasyCV.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源