论文标题

TSGN:交易子图网络有助于以太坊的网络钓鱼检测

TSGN: Transaction Subgraph Networks Assisting Phishing Detection in Ethereum

论文作者

Wang, Jinhuan, Chen, Pengtao, Xu, Xinyao, Wu, Jiajing, Shen, Meng, Xuan, Qi, Yang, Xiaoniu

论文摘要

由于区块链生态系统的分散和公共性质,以太坊平台上的恶意活动对用户造成了不可估量的损失。现有的网络钓鱼骗局检测方法主要仅依赖于原始交易网络的分析,这些分析很难深入研究交易互动网络结构中隐藏的交易模式。在本文中,我们提出了A \下划线{T} ransaction \ undusline {s} ub \ usewissline {g} raph \ lundline {n} etwork(tsgn)基于以太坊的网络钓鱼帐户识别框架。我们首先提取目标帐户的交易子图,然后根据不同的映射机制将这些子图扩展到相应的TSGN中。为了使我们的模型合并有关真实交易的更多重要信息,我们将事务属性编码为TSGN的建模过程,得出TSGN的两个变体,即定向-TSGN和Permutal-TSGN,可以应用于不同的属性网络。特别是,通过将TSGN引入多边交易网络中,提出的多重TSGN模型能够保留时间交易流量信息并捕获网络钓鱼骗局的重要拓扑模式,同时降低了建模大型网络的时间复杂性。广泛的实验结果表明,TSGN模型可以通过合并图表表示学习来提供更多的潜在信息,以提高网络钓鱼检测的性能。

Due to the decentralized and public nature of the Blockchain ecosystem, the malicious activities on the Ethereum platform impose immeasurable losses for the users. Existing phishing scam detection methods mostly rely only on the analysis of original transaction networks, which is difficult to dig deeply into the transaction patterns hidden in the network structure of transaction interaction. In this paper, we propose a \underline{T}ransaction \underline{S}ub\underline{G}raph \underline{N}etwork (TSGN) based phishing accounts identification framework for Ethereum. We first extract transaction subgraphs for target accounts and then expand these subgraphs into corresponding TSGNs based on the different mapping mechanisms. In order to make our model incorporate more important information about real transactions, we encode the transaction attributes into the modeling process of TSGNs, yielding two variants of TSGN, i.e., Directed-TSGN and Temporal-TSGN, which can be applied to the different attributed networks. Especially, by introducing TSGN into multi-edge transaction networks, the Multiple-TSGN model proposed is able to preserve the temporal transaction flow information and capture the significant topological pattern of phishing scams, while reducing the time complexity of modeling large-scale networks. Extensive experimental results show that TSGN models can provide more potential information to improve the performance of phishing detection by incorporating graph representation learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源