论文标题
管道不变的表示神经影像学
Pipeline-Invariant Representation Learning for Neuroimaging
论文作者
论文摘要
深度学习已被广泛应用于神经影像学,包括预测磁共振成像(MRI)体积的脑 - 表型关系。 MRI数据通常需要在建模之前进行广泛的预处理,但是即使使用相同的数据,不同MRI预处理管道引入的变化也可能导致不同的科学发现。在以数据为中心的角度来看,我们首先评估预处理管道选择如何影响监督学习模型的下游性能。接下来,我们提出了两个管道不变表示方法MPSL和PXL,以提高分类性能的鲁棒性并捕获相似的神经网络表示。使用来自英国生物库数据集的2000名人类受试者,我们证明了提出的模型具有独特和共享的优势,特别是MPSL可用于改善对新管道的样本外概括,而PXL则可以用于改善样本内预测性能。 MPSL和PXL都可以学习更多相似的二线表示。这些结果表明,我们提出的模型可以应用于减轻与管道相关的偏差,并改善脑表型建模的预测鲁棒性。
Deep learning has been widely applied in neuroimaging, including predicting brain-phenotype relationships from magnetic resonance imaging (MRI) volumes. MRI data usually requires extensive preprocessing prior to modeling, but variation introduced by different MRI preprocessing pipelines may lead to different scientific findings, even when using the identical data. Motivated by the data-centric perspective, we first evaluate how preprocessing pipeline selection can impact the downstream performance of a supervised learning model. We next propose two pipeline-invariant representation learning methodologies, MPSL and PXL, to improve robustness in classification performance and to capture similar neural network representations. Using 2000 human subjects from the UK Biobank dataset, we demonstrate that proposed models present unique and shared advantages, in particular that MPSL can be used to improve out-of-sample generalization to new pipelines, while PXL can be used to improve within-sample prediction performance. Both MPSL and PXL can learn more similar between-pipeline representations. These results suggest that our proposed models can be applied to mitigate pipeline-related biases, and to improve prediction robustness in brain-phenotype modeling.