论文标题

Repparser:端到端多次人类解析与代表性部分

RepParser: End-to-End Multiple Human Parsing with Representative Parts

论文作者

Chen, Xiaojia, Wang, Xuanhan, Gao, Lianli, Song, Jingkuan

论文摘要

多次人类解析的现有方法通常采用两阶段的策略(通常是自下而上的和自下而上),这遭受了对先前检测的强烈依赖或集体后的高度计算冗余。在这项工作中,我们使用代表性零件(称为Repparser)提出了一个端到端的多个人类解析框架。与主流方法不同,repparser以新的单阶段方式解决了多个人类解析,而无需求助于人的检测或组后。为此,repparser将解析管道解析为实例化的内核产生和部分意识到的人类分析,这些分离是分离和实例分离和实例分离的部分和特定的部分分裂。特别是,我们通过代表性部分授权解析管道的能力,因为它们的特征是通过实例感知关键点,并且可以用来动态解析每个人的实例。具体而言,代表性部分是通过共同定位实例中心并估算身体部位区域的关键来获得的。之后,我们通过代表性的部分动态地预测实例感知的卷积内核,从而将人的零件上下文编码为负责将图像特征铸造为特定实例的代表的每个内核中。每个人实例的解析结果,从而消除了先前检测或组后的要求。对两个具有挑战性的基准进行扩展的实验表明,我们提出的repparser是一个简单而有效的框架,并且实现了非常有竞争力的绩效。

Existing methods of multiple human parsing usually adopt a two-stage strategy (typically top-down and bottom-up), which suffers from either strong dependence on prior detection or highly computational redundancy during post-grouping. In this work, we present an end-to-end multiple human parsing framework using representative parts, termed RepParser. Different from mainstream methods, RepParser solves the multiple human parsing in a new single-stage manner without resorting to person detection or post-grouping.To this end, RepParser decouples the parsing pipeline into instance-aware kernel generation and part-aware human parsing, which are responsible for instance separation and instance-specific part segmentation, respectively. In particular, we empower the parsing pipeline by representative parts, since they are characterized by instance-aware keypoints and can be utilized to dynamically parse each person instance. Specifically, representative parts are obtained by jointly localizing centers of instances and estimating keypoints of body part regions. After that, we dynamically predict instance-aware convolution kernels through representative parts, thus encoding person-part context into each kernel responsible for casting an image feature as an instance-specific representation.Furthermore, a multi-branch structure is adopted to divide each instance-specific representation into several part-aware representations for separate part segmentation.In this way, RepParser accordingly focuses on person instances with the guidance of representative parts and directly outputs parsing results for each person instance, thus eliminating the requirement of the prior detection or post-grouping.Extensive experiments on two challenging benchmarks demonstrate that our proposed RepParser is a simple yet effective framework and achieves very competitive performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源