论文标题

合并全球和本地信息,以了解程序文本理解

Coalescing Global and Local Information for Procedural Text Understanding

论文作者

Ma, Kaixin, Ilievski, Filip, Francis, Jonathan, Nyberg, Eric, Oltramari, Alessandro

论文摘要

程序文本理解是一项具有挑战性的语言推理任务,需要模型在整个叙事的发展中跟踪实体状态。完整的程序理解解决方案应结合三个核心方面:输入的本地和全局视图,以及对输出的全球视图。先前的方法考虑了这些方面的一个子集,导致精确度较低或低召回率。在本文中,我们提出了合并的全球和本地信息(CGLI),该信息是一个新模型,该模型构建实体和时间段意识到的输入表示(本地输入)考虑了整个上下文(全球输入),并且我们以结构化预测目标(全球输出)共同对实体状态进行建模。因此,CGLI同时优化了精度和回忆。我们使用其他输出层扩展了CGLI,并将其集成到故事推理框架中。对流行的程序文本理解数据集进行了广泛的实验,表明我们的模型可实现最先进的结果。故事推理基准的实验显示了我们模型对下游推理的积极影响。

Procedural text understanding is a challenging language reasoning task that requires models to track entity states across the development of a narrative. A complete procedural understanding solution should combine three core aspects: local and global views of the inputs, and global view of outputs. Prior methods considered a subset of these aspects, resulting in either low precision or low recall. In this paper, we propose Coalescing Global and Local Information (CGLI), a new model that builds entity- and timestep-aware input representations (local input) considering the whole context (global input), and we jointly model the entity states with a structured prediction objective (global output). Thus, CGLI simultaneously optimizes for both precision and recall. We extend CGLI with additional output layers and integrate it into a story reasoning framework. Extensive experiments on a popular procedural text understanding dataset show that our model achieves state-of-the-art results; experiments on a story reasoning benchmark show the positive impact of our model on downstream reasoning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源