论文标题
半二度高度的领域1
The sphere of semiadditive height 1
论文作者
论文摘要
我们构建了$ p $ complete Sphere to to Universal Height $ 1 $更高的半数稳定$ \ infty $ - 类别 - 类别 - $ 1 $ $ 1 $的Carmelii-Schlank- Yanovski- Yanovski,提供了一个反示例,以$ 1 $的猜测,可以从Tsade-$ $ n $ $ n $ $ n $ n $ n $ n $ n $ nm}是一个等效性。然后,我们记录了构造的一些后果,包括对T. schlank的观察,这给出了Lee经典定理在Eilenberg--Maclane空间的稳定共同体上的概念证明。
We construct a lift of the $p$-complete sphere to the universal height $1$ higher semiadditive stable $\infty$-category tsade-$1$ of Carmeli--Schlank--Yanovski, providing a counterexample, at height $1$, to their conjecture that the natural functor from tsade-$n$ to $\mathrm{Sp}_{T(n)}$ is an equivalence. We then record some consequences of the construction, including an observation of T. Schlank that this gives a conceptual proof of a classical theorem of Lee on the stable cohomotopy of Eilenberg--MacLane spaces.