论文标题

具有零顺序内核积分方程的经典解决方案

Classical solutions to integral equations with zero order kernels

论文作者

Chang-Lara, Héctor A., Saldaña, Alberto

论文摘要

我们显示了全局和内部高阶Log-Hölder规律性估算的DIRICHLET积分方程解决方案,其中操作员具有不可整合的核,其原点的奇异性比任何分数laplacian的核心都弱。结果,在右侧的轻度规律性假设下,我们显示了涉及对数laplacian和对数Schrödinger操作员的迪里奇特问题的经典解决方案。

We show global and interior higher-order log-Hölder regularity estimates for solutions of Dirichlet integral equations where the operator has a nonintegrable kernel with a singularity at the origin that is weaker than that of any fractional Laplacian. As a consequence, under mild regularity assumptions on the right hand side, we show the existence of classical solutions of Dirichlet problems involving the logarithmic Laplacian and the logarithmic Schrödinger operator.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源