论文标题
智能能源网络中的电池和氢能储能控制具有柔性能源需求,并使用深度加固学习
Battery and Hydrogen Energy Storage Control in a Smart Energy Network with Flexible Energy Demand using Deep Reinforcement Learning
论文作者
论文摘要
智能能源网络提供了一种有效的手段,可容纳可变可再生能源(例如太阳能和风能)的高渗透率,这是能源生产深度脱碳的关键。但是,鉴于可再生能源以及能源需求的可变性,必须制定有效的控制和能源存储方案来管理可变的能源产生并实现所需的系统经济学和环境目标。在本文中,我们引入了由电池和氢能存储组成的混合储能系统,以处理与电价,可再生能源生产和消费有关的不确定性。我们旨在提高可再生能源利用率,并最大程度地减少能源成本和碳排放,同时确保网络内的能源可靠性和稳定性。为了实现这一目标,我们提出了一种多代理的深层确定性政策梯度方法,这是一种基于强化的基于强化的学习控制策略,可实时优化混合能源存储系统和能源需求的调度。提出的方法是无模型的,不需要明确的知识和智能能源网络环境的严格数学模型。 Simulation results based on real-world data show that: (i) integration and optimised operation of the hybrid energy storage system and energy demand reduces carbon emissions by 78.69%, improves cost savings by 23.5% and renewable energy utilisation by over 13.2% compared to other baseline models and (ii) the proposed algorithm outperforms the state-of-the-art self-learning algorithms like deep-Q network.
Smart energy networks provide for an effective means to accommodate high penetrations of variable renewable energy sources like solar and wind, which are key for deep decarbonisation of energy production. However, given the variability of the renewables as well as the energy demand, it is imperative to develop effective control and energy storage schemes to manage the variable energy generation and achieve desired system economics and environmental goals. In this paper, we introduce a hybrid energy storage system composed of battery and hydrogen energy storage to handle the uncertainties related to electricity prices, renewable energy production and consumption. We aim to improve renewable energy utilisation and minimise energy costs and carbon emissions while ensuring energy reliability and stability within the network. To achieve this, we propose a multi-agent deep deterministic policy gradient approach, which is a deep reinforcement learning-based control strategy to optimise the scheduling of the hybrid energy storage system and energy demand in real-time. The proposed approach is model-free and does not require explicit knowledge and rigorous mathematical models of the smart energy network environment. Simulation results based on real-world data show that: (i) integration and optimised operation of the hybrid energy storage system and energy demand reduces carbon emissions by 78.69%, improves cost savings by 23.5% and renewable energy utilisation by over 13.2% compared to other baseline models and (ii) the proposed algorithm outperforms the state-of-the-art self-learning algorithms like deep-Q network.