论文标题

实施非马克维亚随机模拟的量子维度降低

Implementing quantum dimensionality reduction for non-Markovian stochastic simulation

论文作者

Wu, Kang-Da, Yang, Chengran, He, Ren-Dong, Gu, Mile, Xiang, Guo-Yong, Li, Chuan-Feng, Guo, Guang-Can, Elliott, Thomas J.

论文摘要

复杂的系统嵌入了我们的日常体验中。随机建模使我们能够理解和预测此类系统的行为,从而巩固其在定量科学中的效用。高度非马克维亚过程的准确模型(未来行为取决于过去发生的事件)必须跟踪有关过去观察结果的大量信息,需要高维记忆。量子技术可以改善这一成本,从而允许与相应的经典模型相比,具有较低存储器维度的相同过程的模型。在这里,我们使用光子设置为非马克维亚过程的家族实施了这种记忆效率的量子模型。我们表明,使用一个相同内存维度的任何经典模型,我们实现的量子模型的单个零件可以比实现的量子模型更高。这预示着在复杂系统建模中应用量子技术的关键步骤。

Complex systems are embedded in our everyday experience. Stochastic modelling enables us to understand and predict the behaviour of such systems, cementing its utility across the quantitative sciences. Accurate models of highly non-Markovian processes -- where the future behaviour depends on events that happened far in the past -- must track copious amounts of information about past observations, requiring high-dimensional memories. Quantum technologies can ameliorate this cost, allowing models of the same processes with lower memory dimension than corresponding classical models. Here we implement such memory-efficient quantum models for a family of non-Markovian processes using a photonic setup. We show that with a single qubit of memory our implemented quantum models can attain higher precision than possible with any classical model of the same memory dimension. This heralds a key step towards applying quantum technologies in complex systems modelling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源