论文标题
关于离散log-concave发行的Feige的猜想
On a Conjecture of Feige for Discrete Log-Concave Distributions
论文作者
论文摘要
Feige(2006)的一个显着猜想断言,对于任何$ n $独立的非负随机变量$ x_1,x_2,\ dots,x_n $,每个变量最多都有期望,最多有$ 1 $,$ 1 $ \ mathbb {p} = \ sum_ {i = 1}^n x_i $。在本文中,我们调查了该类别的离散对数符合概率分布类别的猜想,并证明了加强版本。更具体地说,我们表明,当$ x_i $的$ x_i $是独立的离散log-concave时,猜想的$ 1/e $持有,并具有任意期望。
A remarkable conjecture of Feige (2006) asserts that for any collection of $n$ independent non-negative random variables $X_1, X_2, \dots, X_n$, each with expectation at most $1$, $$ \mathbb{P}(X < \mathbb{E}[X] + 1) \geq \frac{1}{e}, $$ where $X = \sum_{i=1}^n X_i$. In this paper, we investigate this conjecture for the class of discrete log-concave probability distributions and we prove a strengthened version. More specifically, we show that the conjectured bound $1/e$ holds when $X_i$'s are independent discrete log-concave with arbitrary expectation.