论文标题

针对社区和性别感知种子的有针对性影响

Targeted Influence with Community and Gender-Aware Seeding

论文作者

Styczen, Maciej, Chen, Bing-Jyue, Teng, Ya-Wen, Pignolet, Yvonne-Anne, Chen, Lydia, Yang, De-Nian

论文摘要

在社交网络上传播信息时,播种算法选择用户开始传播的角色至关重要。现有的大多数播种算法仅着重于最大化到达节点的总数,忽略了群体公平性的问题,尤其是性别失衡。为了解决最大化信息传播到某些目标群体(例如女性)的挑战,我们介绍了社区的概念和用户的性别感知潜力。我们首先表明该网络的社区结构与性别分布密切相关。然后,我们提出了一种算法,该算法利用有关社区结构的信息及其性别潜力,以迭代修改种子集,以使信息群传播在目标群体上,以符合目标比率。最后,我们通过对合成和现实世界数据集进行实验来验证算法。我们的结果表明,与最先进的性别感知的播种算法相比,所提出的播种算法不仅达到目标比,而且还达到了最高的信息传播。

When spreading information over social networks, seeding algorithms selecting users to start the dissemination play a crucial role. The majority of existing seeding algorithms focus solely on maximizing the total number of reached nodes, overlooking the issue of group fairness, in particular, gender imbalance. To tackle the challenge of maximizing information spread on certain target groups, e.g., females, we introduce the concept of the community and gender-aware potential of users. We first show that the network's community structure is closely related to the gender distribution. Then, we propose an algorithm that leverages the information about community structure and its gender potential to iteratively modify a seed set such that the information spread on the target group meets the target ratio. Finally, we validate the algorithm by performing experiments on synthetic and real-world datasets. Our results show that the proposed seeding algorithm achieves not only the target ratio but also the highest information spread, compared to the state-of-the-art gender-aware seeding algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源