论文标题

混沌动力学系统的跨越时间减少

Multigrid Reduction in Time for Chaotic Dynamical Systems

论文作者

Vargas, David A., Falgout, Robert D., Günther, Stefanie, Schroder, Jacob B.

论文摘要

随着CPU时钟速度停滞不前,高性能计算机继续具有更高的核心计数,因此需要增加并行性来利用这些新的体系结构。传统的串行时间构造方案可能是一个重要的瓶颈,因为许多类型的模拟需要大量的时间步长,必须依次计算出来。时间方案(例如,时间(MGRIT)方法的多机减少)并行,通过在时间步长跨时步中并行解决此问题,并在抛物线问题上显示出令人鼓舞的结果。但是,由于混乱的初始价值问题(IVP)本质上是错误的条件,因此混乱的问题已被证明更加困难。姆格里特依赖于连续更粗的时间网格的层次结构来迭代地纠正最好的时间网格上的解决方案,但是由于混乱系统的性质,在较粗糙的水平上的小小的不准确性可能会被极大地放大并导致不良的粗网格校正。在这里,我们基于现有的四二次收敛非线性扩展为多机完全近似方案(FAS)引入了修改后的MGRIT算法,以及一种新颖的时间固定方案。这些方法一起,可以更好地捕获粗网格上的长期混乱行为,并大大改善混乱的IVP的损失收敛性。此外,我们引入了一种新型的低记忆变体,用于用MGRIT求解混沌PDE的算法,该变体不仅可以解决IVP,而且还提供了系统的不稳定Lyapunov载体的估计值。我们为Lorenz系统提供了支持的数值结果,并证明了混乱的Kuramoto-Sivashinsky部分偏微分方程在明显更长的时间域中比以前的工作相比。

As CPU clock speeds have stagnated and high performance computers continue to have ever higher core counts, increased parallelism is needed to take advantage of these new architectures. Traditional serial time-marching schemes can be a significant bottleneck, as many types of simulations require large numbers of time-steps which must be computed sequentially. Parallel in Time schemes, such as the Multigrid Reduction in Time (MGRIT) method, remedy this by parallelizing across time-steps, and have shown promising results for parabolic problems. However, chaotic problems have proved more difficult, since chaotic initial value problems (IVPs) are inherently ill-conditioned. MGRIT relies on a hierarchy of successively coarser time-grids to iteratively correct the solution on the finest time-grid, but due to the nature of chaotic systems, small inaccuracies on the coarser levels can be greatly magnified and lead to poor coarse-grid corrections. Here we introduce a modified MGRIT algorithm based on an existing quadratically converging nonlinear extension to the multigrid Full Approximation Scheme (FAS), as well as a novel time-coarsening scheme. Together, these approaches better capture long-term chaotic behavior on coarse-grids and greatly improve convergence of MGRIT for chaotic IVPs. Further, we introduce a novel low memory variant of the algorithm for solving chaotic PDEs with MGRIT which not only solves the IVP, but also provides estimates for the unstable Lyapunov vectors of the system. We provide supporting numerical results for the Lorenz system and demonstrate parallel speedup for the chaotic Kuramoto- Sivashinsky partial differential equation over a significantly longer time-domain than in previous works.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源