论文标题
对自动微型无人机的强大而有效的基于深度的障碍
Robust and Efficient Depth-based Obstacle Avoidance for Autonomous Miniaturized UAVs
论文作者
论文摘要
纳米大小的无人机具有探索未知和复杂环境的巨大潜力。它们的尺寸很小,使它们敏捷且安全地靠近人类,并使他们可以在狭窄的空间中航行。但是,它们的尺寸很小和有效载荷限制了机上计算和感测的可能性,从而使完全自主的飞行极具挑战性。迈向完全自主权的第一步是可靠的避免障碍,这在通用的室内环境中被证明在技术上具有挑战性。当前的方法利用基于视觉或一维传感器来支持纳米无人机感知算法。这项工作为基于新颖的毫米形式64像素多区域飞行时间(TOF)传感器和通用的无模型控制策略提供了轻巧的避免障碍系统。报告的现场测试基于Crazyflie 2.1,该测试由定制的多区TOF甲板扩展,总质量为35克。该算法仅使用0.3%的车载处理能力(210US执行时间),帧速率为15fps,为许多未来应用提供了绝佳的基础。运行提出的感知系统(包括抬起和操作传感器)所需的总无人机功率不到10%。在通用且以前未开发的室内环境中,提出的自主纳米大小无人机以0.5m/s的速度达到100%可靠性。所提出的系统释放了带有广泛数据集的开源系统,包括TOF和灰度相机数据,并从运动捕获中与无人机位置地面真相相结合。
Nano-size drones hold enormous potential to explore unknown and complex environments. Their small size makes them agile and safe for operation close to humans and allows them to navigate through narrow spaces. However, their tiny size and payload restrict the possibilities for on-board computation and sensing, making fully autonomous flight extremely challenging. The first step towards full autonomy is reliable obstacle avoidance, which has proven to be technically challenging by itself in a generic indoor environment. Current approaches utilize vision-based or 1-dimensional sensors to support nano-drone perception algorithms. This work presents a lightweight obstacle avoidance system based on a novel millimeter form factor 64 pixels multi-zone Time-of-Flight (ToF) sensor and a generalized model-free control policy. Reported in-field tests are based on the Crazyflie 2.1, extended by a custom multi-zone ToF deck, featuring a total flight mass of 35g. The algorithm only uses 0.3% of the on-board processing power (210uS execution time) with a frame rate of 15fps, providing an excellent foundation for many future applications. Less than 10% of the total drone power is needed to operate the proposed perception system, including both lifting and operating the sensor. The presented autonomous nano-size drone reaches 100% reliability at 0.5m/s in a generic and previously unexplored indoor environment. The proposed system is released open-source with an extensive dataset including ToF and gray-scale camera data, coupled with UAV position ground truth from motion capture.