论文标题

从WSI级到斑块级:结构先验引导的双核细胞细颗粒检测

From WSI-level to Patch-level: Structure Prior Guided Binuclear Cell Fine-grained Detection

论文作者

Wang, Baomin, Hu, Geng, Chen, Dan, Hu, Lihua, Li, Cheng, An, Yu, Hu, Guiping, Jia, Guang

论文摘要

准确,快速的双核细胞(BC)检测在预测白血病和其他恶性肿瘤的风险中起着重要作用。但是,手动显微镜计数是耗时的,缺乏客观性。此外,随着BC显微镜整体幻灯片图像(WSIS)的染色质量和多样性的限制,传统的图像处理方法是无助的。为了克服这一挑战,我们提出了一种基于深度学习的启发的两阶段检测方法,该方法是基于深度学习的启发的,该方法是在贴片级别的WSI-Level和细粒度分类处实施BCS粗略检测的级联。粗糙检测网络是基于用于细胞检测的圆形边界框的多任务检测框架,以及用于核检测的中心关键点。圆的表示降低了自由度,与通常的矩形盒子相比,毫会减轻周围杂质的影响,并且在WSI中可能是旋转不变的。检测细胞核中的关键点可以帮助网络感知,并在后来的细粒分类中用于无监督的颜色层分割。精细的分类网络由基于颜色层掩模的监督和基于变压器的关键区域选择模块组成的背景区域抑制模块,其全局建模能力。此外,首先提出了无监督和未配对的细胞质发生器网络来扩展长尾分配数据集。最后,在BC多中心数据集上进行实验。拟议的BC罚款检测方法在几乎所有评估标准中都优于其他基准,从而为癌症筛查等任务提供了澄清和支持。

Accurately and quickly binuclear cell (BC) detection plays a significant role in predicting the risk of leukemia and other malignant tumors. However, manual microscopy counting is time-consuming and lacks objectivity. Moreover, with the limitation of staining quality and diversity of morphology features in BC microscopy whole slide images (WSIs), traditional image processing approaches are helpless. To overcome this challenge, we propose a two-stage detection method inspired by the structure prior of BC based on deep learning, which cascades to implement BCs coarse detection at the WSI-level and fine-grained classification in patch-level. The coarse detection network is a multi-task detection framework based on circular bounding boxes for cells detection, and central key points for nucleus detection. The circle representation reduces the degrees of freedom, mitigates the effect of surrounding impurities compared to usual rectangular boxes and can be rotation invariant in WSI. Detecting key points in the nucleus can assist network perception and be used for unsupervised color layer segmentation in later fine-grained classification. The fine classification network consists of a background region suppression module based on color layer mask supervision and a key region selection module based on a transformer due to its global modeling capability. Additionally, an unsupervised and unpaired cytoplasm generator network is firstly proposed to expand the long-tailed distribution dataset. Finally, experiments are performed on BC multicenter datasets. The proposed BC fine detection method outperforms other benchmarks in almost all the evaluation criteria, providing clarification and support for tasks such as cancer screenings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源