论文标题
Ab-Initio量子化学与神经网络波形
Ab-initio quantum chemistry with neural-network wavefunctions
论文作者
论文摘要
机器学习,特别是深度学习方法在许多模式识别和数据处理问题,游戏玩法中都优于人类的能力,现在在科学发现中也起着越来越重要的作用。机器学习在分子科学中的关键应用是使用密度功能理论,耦合群或其他量子化学方法获得的电子schrödinger方程的势能表面或力场。在这里,我们回顾了一种最新和补充的方法:使用机器学习来帮助直接解决量子化学问题的问题。具体而言,我们专注于使用神经网络ANSATZ函数的量子蒙特卡洛(QMC)方法,以解决电子schrödinger方程,无论是在第一和第二量化的情况下,计算地面和激发态,并概括了多个核构型。与现有的量子化学方法相比,这些新的深QMC方法具有以相对适度的计算成本生成高度准确的Schrödinger方程解决方案。
Machine learning and specifically deep-learning methods have outperformed human capabilities in many pattern recognition and data processing problems, in game playing, and now also play an increasingly important role in scientific discovery. A key application of machine learning in the molecular sciences is to learn potential energy surfaces or force fields from ab-initio solutions of the electronic Schrödinger equation using datasets obtained with density functional theory, coupled cluster, or other quantum chemistry methods. Here we review a recent and complementary approach: using machine learning to aid the direct solution of quantum chemistry problems from first principles. Specifically, we focus on quantum Monte Carlo (QMC) methods that use neural network ansatz functions in order to solve the electronic Schrödinger equation, both in first and second quantization, computing ground and excited states, and generalizing over multiple nuclear configurations. Compared to existing quantum chemistry methods, these new deep QMC methods have the potential to generate highly accurate solutions of the Schrödinger equation at relatively modest computational cost.