论文标题
部分可观测时空混沌系统的无模型预测
Homology Groups of Embedded Fractional Brownian Motion
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
A well-known class of non-stationary self-similar time series is the fractional Brownian motion (fBm) considered to model ubiquitous stochastic processes in nature. In this paper, we study the homology groups of high-dimensional point cloud data (PCD) constructed from synthetic fBm data. We covert the simulated fBm series to a PCD, a subset of unit $D$-dimensional cube, employing the time delay embedding method for a given embedding dimension and a time-delay parameter. In the context of persistent homology (PH), we compute topological measures for embedded PCD as a function of associated Hurst exponent, $H$, for different embedding dimensions, time-delays and amount of irregularity existed in the dataset in various scales. Our results show that for a regular synthetic fBm, the higher value of the embedding dimension leads to increasing the $H$-dependency of topological measures based on zeroth and first homology groups. To achieve a reliable classification of fBm, we should consider the small value of time-delay irrespective of the irregularity presented in the data. More interestingly, the value of scale for which the PCD to be path-connected and the post-loopless regime scale are more robust concerning irregularity for distinguishing the fBm signal. Such robustness becomes less for the higher value of embedding dimension.