论文标题
SEG4REG+:脊柱分割和COBB角回归之间的一致性学习
Seg4Reg+: Consistency Learning between Spine Segmentation and Cobb Angle Regression
论文作者
论文摘要
COBB角度估计的自动化方法对脊柱侧弯评估的需求很高。现有方法通常从地标估计计算COBB角度,或者简单地将低级任务(例如地标检测和脊柱分段)与Cobb角度回归任务相结合,而无需完全探索彼此的好处。在这项研究中,我们提出了一个名为SEG4REG+的新型多任务框架,该框架共同优化了分割和回归网络。我们彼此彻底研究本地和全球的一致性和知识转移。具体而言,我们提出了一个关注正规化模块,从图像分割对利用类激活图(CAM),以发现回归网络中的其他监督,并且CAM可以用作利益区域的增强门,以促进细分任务。同时,我们设计了一种新颖的三角一致性学习,以共同训练两个网络以进行全球优化。对公共AASCE挑战数据集进行的评估证明了每个模块的有效性以及我们的模型与最先进方法的卓越性能。
Automated methods for Cobb angle estimation are of high demand for scoliosis assessment. Existing methods typically calculate the Cobb angle from landmark estimation, or simply combine the low-level task (e.g., landmark detection and spine segmentation) with the Cobb angle regression task, without fully exploring the benefits from each other. In this study, we propose a novel multi-task framework, named Seg4Reg+, which jointly optimizes the segmentation and regression networks. We thoroughly investigate both local and global consistency and knowledge transfer between each other. Specifically, we propose an attention regularization module leveraging class activation maps (CAMs) from image-segmentation pairs to discover additional supervision in the regression network, and the CAMs can serve as a region-of-interest enhancement gate to facilitate the segmentation task in turn. Meanwhile, we design a novel triangle consistency learning to train the two networks jointly for global optimization. The evaluations performed on the public AASCE Challenge dataset demonstrate the effectiveness of each module and superior performance of our model to the state-of-the-art methods.