论文标题

部分标签学习的元客观指导性歧义

Meta Objective Guided Disambiguation for Partial Label Learning

论文作者

Zou, Bo-Shi, Xie, Ming-Kun, Huang, Sheng-Jun

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Partial label learning (PLL) is a typical weakly supervised learning framework, where each training instance is associated with a candidate label set, among which only one label is valid. To solve PLL problems, typically methods try to perform disambiguation for candidate sets by either using prior knowledge, such as structure information of training data, or refining model outputs in a self-training manner. Unfortunately, these methods often fail to obtain a favorable performance due to the lack of prior information or unreliable predictions in the early stage of model training. In this paper, we propose a novel framework for partial label learning with meta objective guided disambiguation (MoGD), which aims to recover the ground-truth label from candidate labels set by solving a meta objective on a small validation set. Specifically, to alleviate the negative impact of false positive labels, we re-weight each candidate label based on the meta loss on the validation set. Then, the classifier is trained by minimizing the weighted cross entropy loss. The proposed method can be easily implemented by using various deep networks with the ordinary SGD optimizer. Theoretically, we prove the convergence property of meta objective and derive the estimation error bounds of the proposed method. Extensive experiments on various benchmark datasets and real-world PLL datasets demonstrate that the proposed method can achieve competent performance when compared with the state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源