论文标题

时间模糊效用最大化和剩余度量

Temporal Fuzzy Utility Maximization with Remaining Measure

论文作者

Wan, Shicheng, Ye, Zhenqiang, Gan, Wensheng, Chen, Jiahui

论文摘要

高实用项目集挖掘方法从大量时间数据中发现隐藏的模式。但是,高公用事业项目集挖掘的一个不可避免的问题是,其发现的结果隐藏了模式的数量,从而导致可解释性差。结果仅反映了客户的购物趋势,这无法帮助决策者量化收集的信息。用语言术语,计算机使用精确形式化的数学或编程语言,但是人类使用的语言总是模棱两可的。在本文中,我们提出了一种新型的一相时间模糊实用程序集挖掘方法,称为TFUM。它修改了时间模糊列表,以减少有关内存中潜在的高时间模糊实用程序集的重要信息,然后在短时间内发现一套完整的真正有趣模式。特别是,其余的度量是本文的时间模糊实用程序项目集挖掘域中第一次采用的措施。剩下的最大时间模糊效用是比以前所采用的研究更紧密,更强的上限。因此,它在修剪TFUM的搜索空间中起着重要作用。最后,我们还评估了TFUM对各种数据集的效率和有效性。广泛的实验结果表明,在运行时成本,内存使用和可扩展性方面,TFUM优于最新算法。此外,实验证明,剩余的措施可以在采矿过程中明显地修剪不必要的候选人。

High utility itemset mining approaches discover hidden patterns from large amounts of temporal data. However, an inescapable problem of high utility itemset mining is that its discovered results hide the quantities of patterns, which causes poor interpretability. The results only reflect the shopping trends of customers, which cannot help decision makers quantify collected information. In linguistic terms, computers use mathematical or programming languages that are precisely formalized, but the language used by humans is always ambiguous. In this paper, we propose a novel one-phase temporal fuzzy utility itemset mining approach called TFUM. It revises temporal fuzzy-lists to maintain less but major information about potential high temporal fuzzy utility itemsets in memory, and then discovers a complete set of real interesting patterns in a short time. In particular, the remaining measure is the first adopted in the temporal fuzzy utility itemset mining domain in this paper. The remaining maximal temporal fuzzy utility is a tighter and stronger upper bound than that of previous studies adopted. Hence, it plays an important role in pruning the search space in TFUM. Finally, we also evaluate the efficiency and effectiveness of TFUM on various datasets. Extensive experimental results indicate that TFUM outperforms the state-of-the-art algorithms in terms of runtime cost, memory usage, and scalability. In addition, experiments prove that the remaining measure can significantly prune unnecessary candidates during mining.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源