论文标题

使用类似原子的局部图像特征来研究大量3D医学图像量的人类遗传学和神经解剖学

Using Atom-Like Local Image Features to Study Human Genetics and Neuroanatomy in Large Sets of 3D Medical Image Volumes

论文作者

Chauvin, Laurent

论文摘要

该论文的贡献源于技术开发的,目的是根据2D图像空间中的SIFT算法在3D图像空间中提取的原子样特征分析大量体积图像。引入了新的特征属性,包括一个二进制特征符号,类似于电荷的二进制特征符号以及3D空间中的一组离散的对称特征方向状态。这些新属性被杠杆化以扩展功能不变性,以包括符号反转和平价(SP)变换,类似于电荷偶联和平等(CP)在量子力学中的粒子及其反粒子之间的变换,从而考虑了由于形状对称形状对称形状对称的局部强度对比度逆局部强度对比度反逆。提出了一种新颖的指数内核来量化从其性质中提取的一对特征的相似性,包括位置,比例,方向,符号和外观。提出了一种名为“软jaccard”的新型措施,以根据其重叠或相交联合会量化一对特征集的相似性,其中核心在一对特征元素之间建立了非二元或软等价。柔软的jaccard可用于识别从同一个人或家庭中提取的成对的功能集,并且简单的距离阈值导致了在主要的公共神经图数据集中发现以前未知的个人和家庭标签错误的惊人发现。提出了一种新算法,以通过识别一个最大化固定特征集和变换的转换设置之间的软jaccard的变换来确定最大化的变换,以登记或空间对齐一对标题为SIFT CORERENT DRIFT(SIFT-CPD)的特征集。与原始CPD算法相比,SIFT-CPD仅基于功能位置信息,在各种具有挑战性的情况下,就可以更快,更准确地注册。

The contributions of this thesis stem from technology developed to analyse large sets of volumetric images in terms of atom-like features extracted in 3D image space, following SIFT algorithm in 2D image space. New feature properties are introduced including a binary feature sign, analogous to an electrical charge, and a discrete set of symmetric feature orientation states in 3D space. These new properties are leveraged to extend feature invariance to include the sign inversion and parity (SP) transform, analogous to the charge conjugation and parity (CP) transform between a particle and its antiparticle in quantum mechanics, thereby accounting for local intensity contrast inversion between imaging modalities and axis reflections due to shape symmetry. A novel exponential kernel is proposed to quantify the similarity of a pair of features extracted in different images from their properties including location, scale, orientation, sign and appearance. A novel measure entitled the soft Jaccard is proposed to quantify the similarity of a pair of feature sets based on their overlap or intersection-over-union, where a kernel establishes non-binary or soft equivalence between a pair of feature elements. The soft Jaccard may be used to identify pairs of feature sets extracted from the same individuals or families with high accuracy, and a simple distance threshold led to the surprising discovery of previously unknown individual and family labeling errors in major public neuroimage datasets. A new algorithm is proposed to register or spatially align a pair of feature sets, entitled SIFT Coherent Point Drift (SIFT-CPD), by identifying a transform that maximizes the soft Jaccard between a fixed feature set and a transformed set. SIFT-CPD achieves faster and more accurate registration than the original CPD algorithm based on feature location information alone, in a variety of challenging.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源