论文标题
模拟动物的学习方式:应用于最佳觅食过程的新建模框架
Simulating how animals learn: a new modelling framework applied to the process of optimal foraging
论文作者
论文摘要
动物学习拥有一个多世纪的生态学家和心理学家。解释动物如何存储和回忆信息的数学模型最近引起了人们的关注。这项工作的核心是统计决策理论(SDT),该理论将动物的信息吸收与贝叶斯推论有关。 SDT有效地解释了动物中的许多学习任务,但是扩展了该理论以预测动物在不断变化的环境中如何学习仍然对生态学家构成挑战。我们通过贝叶斯马尔可夫链蒙特卡洛(MCMC)采样的新实施解决了这一缺点,以模拟动物如何采样环境信息并因此学习。我们将框架应用于基于个体的模型,模拟了野生动物遇到的复杂觅食任务。模拟``动物''学习的行为策略,这些策略仅通过遵循MCMC采样器的原理来优化觅食回报。在这些模拟中,行为可塑性最有利于在不可预测和不确定的环境中有效地觅食。我们的模型表明,即使在这些资源上可以使用这些范围,并且在现有的范围内较高的范围,即使在范围内进行了较低的范围,并且在范围内进行了较低的范围,并且在现有的范围内较低的范围,并且具有理想的理想范围,理想的理想是理想的理论,理想的是理想的范围。更广泛地模拟动物和人类中许多其他任务的学习。
Animal learning has interested ecologists and psychologists for over a century. Mathematical models that explain how animals store and recall information have gained attention recently. Central to this work is statistical decision theory (SDT), which relates information uptake in animals to Bayesian inference. SDT effectively explains many learning tasks in animals, but extending this theory to predict how animals will learn in changing environments still poses a challenge for ecologists. We addressed this shortcoming with a novel implementation of Bayesian Markov Chain Monte Carlo (MCMC) sampling to simulate how animals sample environmental information and learn as a result. We applied our framework to an individual-based model simulating complex foraging tasks encountered by wild animals. Simulated ``animals" learned behavioral strategies that optimized foraging returns simply by following the principles of an MCMC sampler. In these simulations, behavioral plasticity was most conducive to efficient foraging in unpredictable and uncertain environments. Our model suggests that animals prioritize highly concentrated resources even when these resources are less available overall, in line with existing knowledge on optimal foraging and ideal free distribution theory. Our innovative computational modelling framework can be applied more widely to simulate the learning of many other tasks in animals and humans.