论文标题

在被动饮食监测中以自我监督的学习为中心图像

Clustering Egocentric Images in Passive Dietary Monitoring with Self-Supervised Learning

论文作者

Peng, Jiachuan, Shi, Peilun, Qiu, Jianing, Ju, Xinwei, Lo, Frank P. -W., Gu, Xiao, Jia, Wenyan, Baranowski, Tom, Steiner-Asiedu, Matilda, Anderson, Alex K., McCrory, Megan A, Sazonov, Edward, Sun, Mingui, Frost, Gary, Lo, Benny

论文摘要

在我们最近在加纳被动饮食监测的饮食评估现场研究中,我们收集了超过25万件野外图像。该数据集是通过被动监控摄像头技术在低收入和中等收入国家中准确测量单个食物和营养摄入量的持续努力。目前的数据集涉及加纳农村地区和城市地区的20个家庭(74个受试者),研究中使用了两种不同类型的可穿戴摄像头。启动后,可穿戴摄像机不断捕获受试者的活动,在进行分析之前,会产生大量的数据和注释。为了简化数据后处理和注释任务,我们提出了一个新颖的自学学习框架,以将大量以自我为中心的图像聚集到单独的事件中。每个事件都由一系列时间连续和上下文相似的图像组成。通过将图像聚集到单独的事件中,注释者和营养师可以更有效地检查和分析数据,并促进随后的饮食评估过程。在带有地面真相标签的持有测试集中验证,拟议的框架在聚类质量和分类准确性方面优于基准。

In our recent dietary assessment field studies on passive dietary monitoring in Ghana, we have collected over 250k in-the-wild images. The dataset is an ongoing effort to facilitate accurate measurement of individual food and nutrient intake in low and middle income countries with passive monitoring camera technologies. The current dataset involves 20 households (74 subjects) from both the rural and urban regions of Ghana, and two different types of wearable cameras were used in the studies. Once initiated, wearable cameras continuously capture subjects' activities, which yield massive amounts of data to be cleaned and annotated before analysis is conducted. To ease the data post-processing and annotation tasks, we propose a novel self-supervised learning framework to cluster the large volume of egocentric images into separate events. Each event consists of a sequence of temporally continuous and contextually similar images. By clustering images into separate events, annotators and dietitians can examine and analyze the data more efficiently and facilitate the subsequent dietary assessment processes. Validated on a held-out test set with ground truth labels, the proposed framework outperforms baselines in terms of clustering quality and classification accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源