论文标题
对称Schur多个Zeta功能
Symmetric Schur multiple zeta functions
论文作者
论文摘要
我们介绍了多个Zeta功能,其结构类似于对称函数,例如Schur $ p $ - ,Schur $ Q $ - ,在表示理论中的符号和正交功能。我们首先考虑它们的基本属性,例如绝对收敛的域。然后,通过限制截断的多个Zeta功能,我们获得了Schur $ Q $ - 多数Zeta函数的PFAFFIAN表达,Schur $ P $的总和公式和Schur $ Q $ -Multiple Zeta Zeta函数,同步和正交schur schur schur schur schur schur schur schur schur schur schur schur schur schur pustiption suption pustiptions and varia in varia in varia function in varia。最后,我们将它们推广到准对称函数。
We introduce the multiple zeta functions with structures similar to those of symmetric functions such as Schur $P$-, Schur $Q$-, symplectic and orthogonal functions in the representation theory. We first consider their basic properties such as a domain of absolute convergence. And then by restricting to the truncated multiple zeta functions, we obtain the pfaffian expression of the Schur $Q$-multiple zeta functions, the sum formula for Schur $P$- and Schur $Q$-multiple zeta functions, the determinant expressions of symplectic and orthogonal Schur multiple zeta functions under an assumption on variables. Finally, we generalize those to the quasi-symmetric functions.