论文标题

部分可观测时空混沌系统的无模型预测

Mathematical Effects of Linear Visco-elasticity in Quasi-static Biot Models

论文作者

Bociu, Lorena, Muha, Boris, Webster, Justin T.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We investigate and clarify the mathematical properties of linear poro-elastic systems in the presence of classical (linear, Kelvin-Voigt) visco-elasticity. In particular, we quantify the time-regularizing and dissipative effects of visco-elasticity in the context of the quasi-static Biot equations. The full, coupled pressure-displacement presentation of the system is utilized, as well as the framework of implicit, degenerate evolution equations, to demonstrate such effects and characterize linear poro-visco-elastic systems. We consider a simple presentation of the dynamics (with convenient boundary conditions, etc.) for clarity in exposition across several relevant parameter ranges. Clear well-posedness results are provided, with associated a priori estimates on the solutions. In addition, precise statements of admissible initial conditions in each scenario are given.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源