论文标题
部分可观测时空混沌系统的无模型预测
On the existence of strong proof complexity generators
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Cook and Reckhow 1979 pointed out that NP is not closed under complementation iff there is no propositional proof system that admits polynomial size proofs of all tautologies. Theory of proof complexity generators aims at constructing sets of tautologies hard for strong and possibly for all proof systems. We focus at a conjecture from K.2004 in foundations of the theory that there is a proof complexity generator hard for all proof systems. This can be equivalently formulated (for p-time generators) without a reference to proof complexity notions as follows: * There exist a p-time function $g$ stretching each input by one bit such that its range intersects all infinite NP sets. We consider several facets of this conjecture, including its links to bounded arithmetic (witnessing and independence results), to time-bounded Kolmogorov complexity, to feasible disjunction property of propositional proof systems and to complexity of proof search. We argue that a specific gadget generator from K.2009 is a good candidate for $g$. We define a new hardness property of generators, the $\bigvee$-hardness, and shows that one specific gadget generator is the $\bigvee$-hardest (w.r.t. any sufficiently strong proof system). We define the class of feasibly infinite NP sets and show, assuming a hypothesis from circuit complexity, that the conjecture holds for all feasibly infinite NP sets.