论文标题
部分可观测时空混沌系统的无模型预测
Confined plasma transition from the solar atmosphere to the interplanetary medium
论文作者
论文摘要
最后60年的太空探索表明,行星际介质不断受到无数不同的太阳风和暴风雨的影响,这些风和暴风雨在整个地球层中运输太阳能。如果已知源于冠状孔的快速太阳风的来源达成共识,那么这个问题仍然在很大程度上就慢性太阳风(SSW)的起源进行了争议。帕克太阳能调查任务的最新观察为新生的太阳风提供了新的见解。还有一个巨大的挑战仍然是以自洽的方式解释SSW的组成和批量特性。为此,我们利用和开发具有各种复杂程度的模型。这种上下文构成了本文的骨干,该论文的结构如下:我们利用了宽场成像师从太阳能电晕内部拍摄的太阳能探针(WISPR)拍摄的第一张图像,以在较小的尺度上测试我们的全球模型,因为WISPR提供了前所未有的Nascent SSW结构的前所未有的特写镜头。这项工作提供了进一步的证据,证明了将冠状环中的等离子体瞬时释放到太阳风中,我们通过利用高分辨率磁流动力学模拟来解释。最终,我们开发并利用了一种称为IRAP太阳大气模型(ISAM)的冠状环的新的多样性模型,以对色球球和电晕之间发挥作用的血浆传输机制进行深入分析。 ISAM通过对碰撞的全面处理以及在染色层顶部附近的碰撞以及部分电离和辐射冷却/加热机制的全面处理,求解了太阳风的主要成分以及次要离子的耦合。我们使用该模型来研究可以根据其第一个电离电位(FIP)从色球圈到电晕优先提取离子的不同机制。
The last 60 years of space exploration have shown that the interplanetary medium is continually perturbed by a myriad of different solar winds and storms that transport solar material across the whole heliosphere. If there is a consensus on the source of the fast solar wind that is known to originate in coronal holes, the question is still largely debated on the origin of the slow solar wind (SSW). The recent observations from the Parker Solar Probe mission provide new insights on the nascent solar wind. And a great challenge remains to explain both the composition and bulk properties of the SSW in a self-consistent manner. For this purpose we exploit and develop models with various degrees of complexity. This context constitutes the backbone of this thesis which is structured as follows: we exploit the first images taken by the Wide-Field Imager for Solar PRobe (WISPR) from inside the solar corona to test our global models at smaller scales, because WISPR offers an unprecedented close-up view of the fine structure of the nascent SSW. This work provides further evidence for the transient release of plasma trapped in coronal loops into the solar wind, that we interpret by exploiting high-resolution magneto-hydrodynamics simulations. Finally we develop and exploit a new multi-specie model of coronal loops called the Irap Solar Atmosphere Model (ISAM) to provide an in-depth analysis of the plasma transport mechanisms at play between the chromosphere and the corona. ISAM solves for the coupled transport of the main constituents of the solar wind with minor ions through a comprehensive treatment of collisions as well as partial ionization and radiative cooling/heating mechanisms near the top of the chromosphere. We use this model to study the different mechanisms that can preferentially extract ions according to their first ionization potential (FIP) from the chromosphere to the corona.