论文标题

部分可观测时空混沌系统的无模型预测

SUSY-Nonrelativistic Quantum Eigenspectral Energy Analysis for Squared-Type Trigonometric Potentials Through Nikiforov-Uvarov Formalism

论文作者

Aktas, Metin

论文摘要

Schrodinger方程的显式和分析结合状态解决方案在超对称量子力学框架内的平方形式三角学势能(SUSYQM)通过实施Nikiforov-Uvarov(NU)多项式程序来执行。第一步需要采取一定的动作,以采用适当的ANSATZ超电势W(x),以生成电势对为V1(X)和V2(X)。在第二个过程中,使用NU方法插入一维Schrodinger方程并求解超几何微分方程的每个潜力都会产生归一化的波函数描述,并且代数与特征性Susy Quantum量子能量特征谱集对应。值得注意的是,在参数上检查时,它们具有可靠且适用的形式,涉及相对论或非遗传性环境中规定的各种物理量子系统的数学处理。

Explicit and analytical bound-state solutions of the Schrodinger equation for squared-form trigonometric potentials within the framework of supersymmetric quantum mechanics (SUSYQM) are performed by implementing the Nikiforov-Uvarov (NU) polynomial procedure. The first step requires a certain action to adopt an appropriate ansatz superpotential W(x) for generating the potential pair as V1 (x) and V2(x). In the second process, inserting each potential for the one-dimensional Schrodinger equation and solving the hypergeometric differential equation with the NU method gives rise to normalized wave function descriptions and algebraically corresponds to the characteristic SUSY quantum energy eigenspectrum sets. It is remarkable to note that, when examined parametrically, they are of reliable and applicable forms concerning the mathematical treatment of various physical quantum systems prescribed in relativistic or nonrelativistic contexts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源