论文标题

湍流热声转变的平均场同步模型

Mean-field synchronization model of turbulent thermoacoustic transitions

论文作者

Singh, Samarjeet, Roy, Amitesh, Dhadphale, Jayesh M., Chaudhuri, Swetaprovo, Sujith, Raman I.

论文摘要

在湍流燃烧系统中观察到的热声不稳定性具有灾难性的后果,众所周知,建模,预测和控制是具有挑战性的。在这里,我们介绍了热声跃迁的平均场模型,其中非线性火焰响应被建模为一组相位振荡器的振幅加权响应,这些振动响应约束在声学波动的节奏下集体发展。从声波方程与相位振荡器结合开始,我们得出了振幅和相位的进化方程,并获得了极限循环解决方案。我们表明该模型捕获了在不同的燃烧器中观察到的突然和连续过渡到热声不稳定性。我们通过使用参数优化从实验数据中估算模型参数来获得对模型的定量见解。重要的是,我们的方法提供了对过渡到热声不稳定性基础的时空同步和模式形成的解释,同时封装了异步,嵌合体和全局相位同步的统计特性。我们进一步使用模型表明,湍流燃烧器中的连续和突然过渡以限制循环振荡,对应于\ textit {二阶}和\ textit {一阶}的同步过渡。目前的公式提供了热声转变的高度可解释的模型:经验分叉参数的变化,导致限制周期振荡的振荡相当于相位振荡器的耦合强度的提高,从而促进了全局相同步。该模型在捕获不同类型的跃迁和模式形成状态时的普遍性突出了将当前模型扩展到超出热声学以外的各种流体动力现象的可能性。

Thermoacoustic instabilities observed in turbulent combustion systems have disastrous consequences and are notoriously challenging to model, predict and control. Here, we introduce a mean-field model of thermoacoustic transitions, where the nonlinear flame response is modeled as the amplitude weighted response of an ensemble of phase oscillators constrained to collectively evolve at the rhythm of acoustic fluctuations. Starting from the acoustic wave equation coupled with the phase oscillators, we derive the evolution equations for the amplitude and phase and obtain the limit cycle solution. We show that the model captures abrupt and continuous transition to thermoacoustic instability observed in disparate combustors. We obtain quantitative insights into the model by estimating the model parameters from the experimental data using parameter optimisation. Importantly, our approach provides an explanation of spatiotemporal synchronization and pattern-formation underlying the transition to thermoacoustic instability while encapsulating the statistical properties of desynchronization, chimeras, and global phase synchronization. We further show using the model that continuous and abrupt transitions to limit cycle oscillations in turbulent combustors corresponds to synchronization transitions of \textit{second-order} and \textit{first-order}, respectively. The present formulation provides a highly interpretable model of thermoacoustic transitions: changes in empirical bifurcation parameters which lead to limit cycle oscillations amounts to an increase in the coupling strength of the phase oscillators, promoting global phase synchronization. The generality of the model in capturing different types of transitions and states of pattern-formation highlights the possibility of extending the present model to a broad range of fluid-dynamical phenomena beyond thermoacoustics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源