论文标题

汽车应用程序的2D对象的快速,精确的二进制实例分割

Fast and Precise Binary Instance Segmentation of 2D Objects for Automotive Applications

论文作者

Ravindra, Darshan Ganganna, Dinges, Laslo, Ayoub, Al-Hamadi, Baranau, Vasili

论文摘要

在本文中,我们专注于改进二进制2D实例细分,以帮助人类用多边形标记地面真相数据集。人类的标签只需要在物体周围绘制盒子,然后自动生成多边形。为了有用,我们的系统必须实时运行。二进制实例分割的最常见方法涉及编码器折叠网络。本报告评估了最先进的编码器 - 码头网络,并提出了一种使用这些网络改善实例分割质量的方法。除了网络架构的改进外,我们提出的方法还依靠为网络输入(所谓的极端点)提供额外的信息,即对象轮廓上的最外点。用户几乎可以迅速地标记它们,而不是边界盒。边界框也可以从极端点推导。与其他最先进的编码器网络相比,此方法可产生更好的IOU,并且在将其部署在CPU上时也足够快。

In this paper, we focus on improving binary 2D instance segmentation to assist humans in labeling ground truth datasets with polygons. Humans labeler just have to draw boxes around objects, and polygons are generated automatically. To be useful, our system has to run on CPUs in real-time. The most usual approach for binary instance segmentation involves encoder-decoder networks. This report evaluates state-of-the-art encoder-decoder networks and proposes a method for improving instance segmentation quality using these networks. Alongside network architecture improvements, our proposed method relies upon providing extra information to the network input, so-called extreme points, i.e. the outermost points on the object silhouette. The user can label them instead of a bounding box almost as quickly. The bounding box can be deduced from the extreme points as well. This method produces better IoU compared to other state-of-the-art encoder-decoder networks and also runs fast enough when it is deployed on a CPU.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源