论文标题
马格努斯诱导的二极管效应在具有周期性电势的通道中的天际效应
Magnus Induced Diode Effect for Skyrmions in Channels with Periodic Potentials
论文作者
论文摘要
使用基于粒子的模型,我们研究了上壁含有一个深度的离子的通道中的天空动态行为,下壁包含不同深度的离子。在施加的驱动力下,通道中的Skyrmions以有限的Skyrmion Hall角移动,该角度将它们偏向上壁,以$ -X $方向驾驶,下壁以$+x $方向驾驶。当上层行星的高度为零时,以$ -X $方向驾驶的空中偏向于平坦的上壁,而天空速度速度则依赖于驱动器。对于$+x $方向驾驶,将天空推向较低的离主,并被捕获,从而降低了速度和非线性速度速度响应。当上壁上有浅层行星和下壁的深层牧师时,Skyrmions被困在两个行驶方向上。但是,由于离婚深度差异,Skyrmions在$ -X $方向驾驶下更容易移动,并以$+x $方向驾驶而被严重捕获。首选的$ -X $方向运动产生了我们所谓的Magnus二极管效应,因为它在零Magnus力的极限下消失,这与对不对称锯齿电位观察到的二极管效应不同。我们表明,由于集体捕获事件,运输曲线可以表现出一系列的跳跃或下降,负差分电导率以及重新进入的固定。我们还讨论了我们的结果如何与类似的Skyrmion二极管系统上最近的连续体建模有关。
Using a particle based model, we investigate the skyrmion dynamical behavior in a channel where the upper wall contains divots of one depth and the lower wall contains divots of a different depth. Under an applied driving force, skyrmions in the channels move with a finite skyrmion Hall angle that deflects them toward the upper wall for $-x$ direction driving and the lower wall for $+x$ direction driving. When the upper divots have zero height, the skyrmions are deflected against the flat upper wall for $-x$ direction driving and the skyrmion velocity depends linearly on the drive. For $+x$ direction driving, the skyrmions are pushed against the lower divots and become trapped, giving reduced velocities and a nonlinear velocity-force response. When there are shallow divots on the upper wall and deep divots on the lower wall, skyrmions get trapped for both driving directions; however, due to the divot depth difference, skyrmions move more easily under $-x$ direction driving, and become strongly trapped for $+x$ direction driving. The preferred $-x$ direction motion produces what we call a Magnus diode effect since it vanishes in the limit of zero Magnus force, unlike the diode effects observed for asymmetric sawtooth potentials. We show that the transport curves can exhibit a series of jumps or dips, negative differential conductivity, and reentrant pinning due to collective trapping events. We also discuss how our results relate to recent continuum modeling on a similar skyrmion diode system.