论文标题

Chebyshev方法的对称和动力学

Symmetry and dynamics of Chebyshev's method

论文作者

Nayak, Tarakanta, Pal, Soumen

论文摘要

保存理性地图$ r $的朱莉娅集合的所有全体形态欧几里得异构体的集合均由$σr$表示。本文中显示的是,如果一种遇到的方法$ f $满足缩放定理,即对于多项式$ p $,$ f_p $ aff_ offine conjugate to $ f_ {λp\ circ circ t} $对于每个非零的复数$λ$ $λ$ and nof offinom $ t $,那么对于$ p $ p $ p $ p prodial $ p prodial porials prodial not ot dress prodials not two podial two) $σp\subseteqσf_p$。由于Chebyshev的方法满足了缩放定理,因此我们具有$σp\subseteqσ{c_p} $,其中$ p $是一个集中的多项式。本文的其余部分致力于探索平等所持的情况,在此过程中,找到了$ c_p $的动态。我们表明,朱莉娅设置$ \ Mathcal {J}(c_p)$ $ c_p $永远不可能是一条线。如果一个中心的多项式$ p $是(a)单次政治,(b)完全具有相同多样性的根源,(c)立方和$σp$是非普遍的,或者(d)Quartic,$ 0 $是$ p $ and $ p $和$σp$的根,那么它是非赖以生存的。在所有这些情况下,FATOU集$ \ MATHCAL {F}(C_P)$是$ C_P $的所有吸引盆地的结合,对应于$ p $的根和$ \ Mathcal {J j}(jp)$。据观察,在所有这些情况下,$ \ Mathcal {J}(C_P)$都是本地连接的。

The set of all holomorphic Euclidean isometries preserving the Julia set of a rational map $R$ is denoted by $ΣR$. It is shown in this article that if a root-finding method $F$ satisfies the Scaling theorem, i.e., for a polynomial $p$, $F_p$ is affine conjugate to $F_{λp \circ T}$ for every nonzero complex number $λ$ and every affine map $T$, then for a centered polynomial $p$ of order at least two (which is not a monomial), $Σp\subseteq ΣF_p$. As the Chebyshev's method satisfies the Scaling theorem, we have $Σp \subseteq Σ{C_p}$, where $p$ is a centered polynomial. The rest part of this article is devoted to explore the situations where the equality holds and in the process, the dynamics of $C_p$ is found. We show that the Julia set $\mathcal{J}(C_p)$ of $ C_p$ can never be a line. If a centered polynomial $p$ is (a) unicritical, (b) having exactly two roots with the same multiplicity, (c) cubic and $Σp$ is non-trivial or (d) quartic, $0$ is a root of $p$ and $Σp $ is non-trivial then it is proved that $Σp = ΣC_p$. It is found in all these cases that the Fatou set $\mathcal{F}(C_p)$ is the union of all the attracting basins of $C_p$ corresponding to the roots of $p$ and $\mathcal{J}(C_p)$ is connected. It is observed that $\mathcal{J}(C_p)$ is locally connected in all these cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源