论文标题

半监督和无监督的深视觉学习:一项调查

Semi-Supervised and Unsupervised Deep Visual Learning: A Survey

论文作者

Chen, Yanbei, Mancini, Massimiliano, Zhu, Xiatian, Akata, Zeynep

论文摘要

最先进的深度学习模型通常经过大量昂贵的标签培训数据培训。但是,需要详尽的手动注释可能会降低该模型在有限标签制度中的普遍性。半监督的学习和无监督的学习提供了有希望的范式,可以从大量未标记的视觉数据中学习。这些范式的最新进展表明,利用未标记的数据来改善模型概括并提供更好的模型初始化的良好好处。在这项调查中,我们从统一的角度回顾了有关半监督学习(SSL)和无监督学习(UL)的最新高级深度学习算法(SSL)。为了对这些领域的最先进的整体了解,我们提出了统一的分类法。我们将现有代表性SSL和UL分类为全面而有见地的分析,以在不同的计算机视觉任务中的不同学习场景和应用中强调其设计理由。最后,我们讨论了SSL和UL的新兴趋势和公开挑战,以阐明未来的关键研究方向。

State-of-the-art deep learning models are often trained with a large amount of costly labeled training data. However, requiring exhaustive manual annotations may degrade the model's generalizability in the limited-label regime. Semi-supervised learning and unsupervised learning offer promising paradigms to learn from an abundance of unlabeled visual data. Recent progress in these paradigms has indicated the strong benefits of leveraging unlabeled data to improve model generalization and provide better model initialization. In this survey, we review the recent advanced deep learning algorithms on semi-supervised learning (SSL) and unsupervised learning (UL) for visual recognition from a unified perspective. To offer a holistic understanding of the state-of-the-art in these areas, we propose a unified taxonomy. We categorize existing representative SSL and UL with comprehensive and insightful analysis to highlight their design rationales in different learning scenarios and applications in different computer vision tasks. Lastly, we discuss the emerging trends and open challenges in SSL and UL to shed light on future critical research directions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源