论文标题
在非线性klein-gordon方程的NLS近似值上
On the NLS approximation for the nonlinear Klein-Gordon equation
论文作者
论文摘要
在本文中,开发一种基于分散PDE的傅立叶分析方法的新方法,我们为一维立方klein-gordon方程建立了低规律性的NLS近似值。我们的主要结果包括能量类解决方案,这些解决方案在$ l^2(\ Mathbb {r})$中正式渐近。假设有更多的规律性,也获得了精确的收敛速度。
In this paper, developing a new approach based on Fourier analysis methods for dispersive PDEs, we establish a low regularity NLS approximation for the one-dimensional cubic Klein-Gordon equation. Our main result includes energy class solutions which are formally asymptotically in $L^2(\mathbb{R})$. A precise rate of convergence is also obtained assuming more regularity.