论文标题
麦克斯韦方程的有效且能量衰减的不连续的Galerkin方法
An efficient and energy decaying discontinuous Galerkin method for Maxwell's equations for the Cole-Cole dispersive medium
论文作者
论文摘要
在这项工作中,我们通过使用不连续的Galerkin(DG)方法来求解耦合的时间域Maxwell的方程和极化方程来研究Cole-Cole分散介质中电磁波的传播。我们为Cole-Cole模型定义了一种新的且尖锐的总能量功能,该功能比当前文献中的可用内容更好地描述了能量的行为。该问题的时间域数值建模的一个主要主题是解决了处理时间域极化方程中涉及的非本地术语的困难。基于扩散表示和正交公式,我们得出了一个近似系统,在该系统中,卷积内核被有限数量的辅助变量代替,这些辅助变量满足了局部时间的普通微分方程。为了确保所得的近似系统稳定,建立了非线性约束的优化数值方案以确定正交系数。通过特殊选择数值通量和投影,我们获得了{对于恒定系数案例}半混凝土DG方案的最佳顺序收敛结果。时间离散化是通过标准的两步向后差公式实现的,并且构建了具有线性复杂性的快速算法。提供了数值示例,以证明所提出的算法的效率,验证理论结果并说明能量的行为。
In this work, we investigate the propagation of electromagnetic waves in the Cole-Cole dispersive medium by using the discontinuous Galerkin (DG) method to solve the coupled time-domain Maxwell's equations and polarization equation. We define a new and sharpened total energy function for the Cole-Cole model, which better describes the behaviors of the energy than what is available in the current literature. A major theme in the time-domain numerical modeling of this problem has been tackling the difficulty of handling the nonlocal term involved in the time-domain polarization equation. Based on the diffusive representation and the quadrature formula, we derive an approximate system, where the convolution kernel is replaced by a finite number of auxiliary variables that satisfy local-in-time ordinary differential equations. To ensure the resulted approximate system is stable, a nonlinear constrained optimization numerical scheme is established to determine the quadrature coefficients. By a special choice of the numerical fluxes and projections, we obtain {for the constant coefficient case } an optimal-order convergence result for the semi-discrete DG scheme. The temporal discretization is achieved by the standard two-step backward difference formula and a fast algorithm with linear complexity is constructed. Numerical examples are provided for demonstrating the efficiency of the proposed algorithm, validating the theoretical results and illustrating the behaviors of the energy.